
The Book of V
Release 0.4.5

Peter Badida

Nov 27, 2019

CONTENTS:

1 Installation 3
1.1 Prerequisities . 3
1.2 Cloning, compiling and building . 3

2 Modes 5
2.1 REPL . 5
2.2 Compiler . 6
2.3 Runner . 6

3 Chapter I: Calculator 7
3.1 Operations . 7
3.2 Input . 9
3.3 Pseudo-stack with array . 10

4 Chapter II: Hangman 15
4.1 Game loop . 15
4.2 Improvements . 19

5 Chapter III: Word counter 25

6 Chapter IV: Role-Playing Game 29

7 Appendix 35

8 Index 37

9 Indices and tables 39

Index 41

i

ii

The Book of V, Release 0.4.5

The goal of this book is to teach the V language from the beginning. This book is a work in progress and I’ll be editing
and including new chapters as I too discover more about this new language. The book versions are released as separate
Git tags containing assets hopefully satifying everyone’s taste in reading formats.

See something incorrectly described, buggy or want to contribute a chapter of your own? Feel free to send a pull
request and we will find a way to include it!

Feel free to buy me a coffee

CONTENTS: 1

https://www.git-scm.com/
https://paypal.me/peterbadida

The Book of V, Release 0.4.5

2 CONTENTS:

CHAPTER

ONE

INSTALLATION

1.1 Prerequisities

• Internet connection

• Git (2.17.1)

• Docker (19.03.2)

Note: These are versions are mine, but older ones should work too for simple cloning and building Docker image.

1.2 Cloning, compiling and building

To ensure the same environment everywhere we’ll use Docker and the default Dockerfile from the V repository.
Current version is fetched this commit.

#same container that golang use
FROM buildpack-deps:buster-curl

LABEL maintainer="ANAGO Ronnel <anagoandy@gmail.com>"
WORKDIR /opt/vlang
RUN apt-get update && \

DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends gcc
→˓clang make git && \

apt-get clean && rm -rf /var/cache/apt/archives/* && \
rm -rf /var/lib/apt/lists/*

COPY . .
RUN make && \

ln -s /opt/vlang/v /usr/local/bin/v

CMD ["bash"]

Download it with cloning the repo first (currently b51b885):

git clone https://github.com/vlang/v
or
git clone git@github.com:vlang/v

Then proceed to building the Docker image locally. During the building process one of the instructions is make which
compiles V in that Docker image. Once it’s built, create a container and enter it:

3

https://github.com/vlang/v
https://github.com/vlang/v/tree/2880baa1bc2730519f3ce01e5f18b7a4363206b8/

The Book of V, Release 0.4.5

docker build --tag vlang .
docker run --interactive --tty vlang

Your console should now look similar to this:

root@16b5a9d05074:/opt/vlang#

The environment you entered is an isolated part of your system which contains a V installation:

root@16b5a9d05074:/opt/vlang# v --version
V 0.1.21 b51b885

By default the whole environment is isolated, but that prevents us from adding or editing files from an editor that’s not
installed in the Docker image. For that we will use mounting of a host directory into the container so we can:

1. Edit the files on the OS with an editor of own choice

2. Compile and run them in a consistent and reproducible environment

We will also use shortened flags for docker instead of writing e.g. --interactive in full.

docker run -i -t -v $(pwd):/opt/src -w /opt/src vlang

This command will run the Docker container from vlang image in an interactive mode, will allocate a tty for
it, make visible the directory you are in (pwd) to the container at location /opt/src and change the default working
directory to the project location: /opt/src.

Note: Once you have built the Docker image, you can navigate to any folder on your computer and run the command
above. This is helpful if you have multiple projects because it’ll bring the consistent environemnt with you wherever
you go.

In case you make some changes to the Dockerfile, it’s nice to have it always available even between multiple
machines. You can do that with pushing and pulling Docker images.

4 Chapter 1. Installation

https://docs.docker.com/ee/dtr/user/manage-images/pull-and-push-images/

CHAPTER

TWO

MODES

V provides multiple modes of running while the default (v or v runrepl) throws you into the REPL (Read-Execute-
Print-Loop) console where you can try the language or write small scripts.

2.1 REPL

Although not in the way as it is for Python or JavaScript, this interpreter-like mode takes your code and in the back-
ground writes it to a temporary .v file which is then compiled and run. V then returns the output back to you in the
console.

v # or v runrepl

root@16b5a9d05074:/opt/vlang# v
V 0.1.21 b51b885
Use Ctrl-C or `exit` to exit
>>>

The console provides a simple help command that lists all available console commands:

>>> help

V 0.1.21 b51b885
help Displays this information.
Ctrl-C, Ctrl-D, exit Exits the REPL.
clear Clears the screen.

Note: Currently there is a hidden step between compiling .v file and running the final program. V requires a C
compiler present on the system and attempts to compile .v file to .c which is then compiled to machine code a CPU
understands. After that V runs the binary produced by the C compiler and retrieves output back.

Warning: Currently there is no support for command history, therefore arrows, Control-P, Alt-P or any combina-
tion of them will result in an escape code printed to the console.

>>> ^[[A
>>> ^P
>>> ^[p
>>> ^[^P
>>> ^[[1;5A
>>> ^[[1;3A

5

The Book of V, Release 0.4.5

By default you have an access to the builtin module

>>> println("Hello, world!")
Hello, world!

// or even

>>> print("Hello, world!")
Hello, world!

In its simplest form it can be used as a calculator:

>>> print(1 + 1)
2

For more examples check Calculator test cases.

2.2 Compiler

V executable when provided with an argument that contains a .v suffix will open that file, compile it and produce a
same-named binary.

// helloworld.v
println("Hello, world!") // with a new like character \n
print("Hello, world!") // without a new like character

Compile with:

v helloworld.v
./helloworld

Note: In case you can’t execute the output file try changing the file into an executable with chmod +x <file>.

2.3 Runner

Similar to REPL mode, this mode in the background compiles and attempts to run your file.

v run helloworld.v

6 Chapter 2. Modes

https://github.com/vlang/v/tree/master/vlib/builtin

CHAPTER

THREE

CHAPTER I: CALCULATOR

For the first program (except Hello world of course!) let’s create a simple CLI calculator. We start with a clean file in
your favorite text editor:

// calc.v

3.1 Operations

We’ll start with the addition. In V a function is created by fn keyword and a basic numeric type “integer” is noted as
int:

// calc.v
fn add(left int, right int) int {

return left + right
}

If we run the file:

v run calc.v

nothing happens because we are missing the entrypoint for the executable, or simply said, a place where computer
should begin the execution of a program. In V the entrypoint is known as a main function declared as fn main().
Let’s add a main() function that adds two integers and displays the output in the console. For that we’ll use a built-in
println(s string) function:

// calc.v
fn add(left int, right int) int {

return left + right
}

fn main() {
println(add(1, 2))

}

Now we can see the output. Let’s include the rest of +-*/ operations in the same way we created add() function:

// calc.v
fn add(left int, right int) int {

return left + right
}

fn sub(left int, right int) int {

(continues on next page)

7

https://vlang.io/docs#println

The Book of V, Release 0.4.5

(continued from previous page)

return left - right
}

fn mul(left int, right int) int {
return left * right

}

fn div(left int, right int) int {
return left / right

}

fn main() {
println(add(1, 2))
println(sub(1, 2))
println(mul(1, 2))
println(div(1, 2))

}

As we call each of the functions to perform a basic operation, we will see this output. Noticed something strange?

3
-1
2
0

1 / 2 is apparently 0. But why? Shouldn’t the output be 0.5?

Yes and no. For now we use int type which does not allow a decimal mark and values after that symbol. There is a
different type that allows it written as f32 (short for 32-bit floating-point number).

Switch all types from int to f32 and run the program again.

// calc.v
fn add(left f32, right f32) f32 {

return left + right
}

fn sub(left f32, right f32) f32 {
return left - right

}

fn mul(left f32, right f32) f32 {
return left * right

}

fn div(left f32, right f32) f32 {
return left / right

}

fn main() {
println(add(1, 2))
println(sub(1, 2))
println(mul(1, 2))
println(div(1, 2))

}

8 Chapter 3. Chapter I: Calculator

The Book of V, Release 0.4.5

3.000000
-1.000000
2.000000
0.500000

Nice, we can see a proper result for 1 / 2 operation.

3.2 Input

We can see the program computing results, but it’s only for the hard-coded values directly in the calc.v file. This
way we’d always need to rewrite our calculator.

As you’ve already noticed when running a V program, V already knows what file you want to use by you providing a
filename in the console. The same way V can use your value for compiling we can use it for computing results. The
input values can be fetched with the help of os module.

In V you can use a module by importing it via import keyword. From that module we will need a constant os.args
that returns an array of another kind of V type - string.

import os

fn add(left f32, right f32) f32 {
return left + right

}

fn sub(left f32, right f32) f32 {
return left - right

}

fn mul(left f32, right f32) f32 {
return left * right

}

fn div(left f32, right f32) f32 {
return left / right

}

fn main() {
println(add(1, 2))
println(sub(1, 2))
println(mul(1, 2))
println(div(1, 2))
println(os.args)

}

Now you should see even the array of arguments passed to the calculator program the same as below:

3.000000
-1.000000
2.000000
0.500000
["./calculator-basic-ops-float"]

The first argument will always be a name of the executable that’s running, which in this case means ./calc, and
anything other added after the path to the executable is added as the next argument.

3.2. Input 9

https://github.com/vlang/v/tree/f7c00b818074689b5d87c1c571f0de5832820a7e/vlib/os
https://github.com/vlang/v/blob/f7c00b818074689b5d87c1c571f0de5832820a7e/vlib/os/os.v#L30
https://vlang.io/docs#strings

The Book of V, Release 0.4.5

call
v run calc.v argument
./calc argument

output
...
["./calc", "argument"]

3.3 Pseudo-stack with array

Once we can access the console arguments, we can quickly implement so called Reverse Polish notation with a for
loop, if conditional and stack.

First we skip the executable path:

import os

fn main() {
for idx, value in os.args {

if idx == 0 {
continue

}
println(value)

}
}

To implement Reverse Polish notation we will use an array as a pseudo-stack structure for storing the f32. To
create a variable V uses a simple <name> := <value> syntax e.g. number := 1, however for an array there is
a catch. We need to go a little bit further and specify the type of all values in it as <name> := []<type>.

fn main() {
stack := []f32
stack << 1.2 // error

}

After we use a keyword mut, we mark the variable as editable and can use << operator for the array to append a new
value to it.

Currently there is no quick way for popping the last element from an array while removing it at the same time,
therefore we will access the last element by its position in angle brackets (array[idx]) in the array and then use
array.delete() to remove it.

fn main() {
mut stack := []f32

// push
stack << 1.2
stack << 2.2
stack << 3.2

// print the array and its length
println(stack)
println(stack.len)

// pop last item

(continues on next page)

10 Chapter 3. Chapter I: Calculator

https://en.wikipedia.org/wiki/Reverse_Polish_notation
https://vlang.io/docs#for
https://vlang.io/docs#for
https://vlang.io/docs#if
https://en.wikipedia.org/wiki/Stack_%28abstract_data_type%29
https://en.wikipedia.org/wiki/Reverse_Polish_notation
https://vlang.io/docs#arrays
https://en.wikipedia.org/wiki/Stack_%28abstract_data_type%29
https://github.com/vlang/v/blob/f7c00b818074689b5d87c1c571f0de5832820a7e/vlib/builtin/array.v#L107

The Book of V, Release 0.4.5

(continued from previous page)

temp := stack[stack.len - 1]
stack.delete(stack.len - 1)

// print the array and the popped item
println(stack)
println(temp)

}

As you can see, an array has an array.len attribute. It’s changed on each resizing manipulation of array.

Back to the calculator code, we will use this pseudo-stack with manually pushing and removing items to implement
Reverse Polish notation from console arguments.

We’ll create two array “buckets” for two categories of operators according to their precedence in an ordinary calculator.

After that let’s take care of an obvious error that might be raised - calling an operator function when there isn’t enough
values on the stack. We need to check the number of elements in the stack array by its len attribute as we did
for popping the values from it in previous example and then exit the program with a warning for which we’ll use
panic(s string).

We can concat a variable, to a different string by using $ symbol and a name of a variable in a string like this:
println("Value: $my_variable").

fn main() {
// RPN stack
stack := []f32
prioritized := ["mul", "div"]
normal := ["add", "sub"]

for idx, value in os.args {
if idx == 0 {

continue
}

println(value)
if (value in prioritized || value in normal) && stack.len < 2 {

panic("No values to use for operator $value")
}

}
}

Now let’s append the console arguments on the stack if they are not one of the operator functions’ names we added
to the arrays. By default any value from the console arguments is a string which means we are missing one step.
We need to convert the value to f32 before appending it. By looking at the string implementation we can find its
function for conversion string.f32(s string) which we should use before trying to append the value on the
stack.

Once the values are converted and on the stack, we need to check if there are at least two and in the next console
argument is an operator function’s name pop the values into left and right variables which will be used for
printing out the result.

fn main() {
// RPN stack
mut stack := []f32
prioritized := ["mul", "div"]
normal := ["add", "sub"]

(continues on next page)

3.3. Pseudo-stack with array 11

https://vlang.io/docs#arrays
https://github.com/vlang/v/blob/b73387647cdc1445a9c8a0ea000d8f1fae4d02f8/vlib/builtin/array.v#L14
https://vlang.io/docs#arrays
https://en.wikipedia.org/wiki/Stack_%28abstract_data_type%29
https://en.wikipedia.org/wiki/Reverse_Polish_notation
https://github.com/vlang/v/blob/b73387647cdc1445a9c8a0ea000d8f1fae4d02f8/vlib/builtin/builtin.v#L110
https://vlang.io/docs#strings
https://github.com/vlang/v/blob/333f0ab89f22846e1023d1ab6b1deec5fde592ad/vlib/builtin/string.v#L46
https://github.com/vlang/v/blob/333f0ab89f22846e1023d1ab6b1deec5fde592ad/vlib/builtin/string.v#L193

The Book of V, Release 0.4.5

(continued from previous page)

for idx, value in os.args {
if idx == 0 {

continue
}

if (value in prioritized || value in normal) {
if stack.len < 2 {

panic("No values to use for operator $value")
} else {

right := stack[stack.len - 1]
stack.delete(stack.len - 1)

left := stack[stack.len - 1]
stack.delete(stack.len - 1)

if value == "add" {
println(add(left, right))

} else if value == "sub" {
println(sub(left, right))

} else if value == "mul" {
println(mul(left, right))

} else if value == "div" {
println(div(left, right))

} else {
println("$left $value $right")
println(stack)
panic("This should not happen!")

}
continue

}
}

if (value in prioritized || value in normal) && stack.len < 2 {
panic("No values to use for operator $value")

}

if !(value in prioritized || value in normal) {
stack << value.f32()

}
}

}

Now we can check some basic instructions for our calculator this way:

// v calc.v
// ./calc 1.5 2 add
3.500000
// ./calc 1.5 2 sub
-0.500000
// ./calc 1.5 2 mul
3.000000
// ./calc 1.5 2 div
0.750000

Although usable, it’s very limited as it does not provide any option for joined operations such as (1 + 2) * (3 /
(4 + 5)). First we need to convert this operation into Reverse Polish notation instructions so we can appropriately
edit the main() function.

12 Chapter 3. Chapter I: Calculator

https://en.wikipedia.org/wiki/Reverse_Polish_notation

The Book of V, Release 0.4.5

(1 + 2) * (3 / (4 + 5)) = 1
1 2 + 3 4 5 + / *
1 2 add 3 4 5 add div mul

// each value is added on the stack as present
// computing starts immediately after an operator is present and the two
// closest values on the stack are popped in the reversed order i.e.
// right first, left second
1
1 2
1 2 +
3
3 3
3 3 4
3 3 4 5
3 3 4 5 +
3 3 9
3 3 9 /
3 1/3
3 1/3 *
1
= 1

For that we need to rework the result handling a bit and put it on stack instead of printing out right away - switch
println(operator(left, right)) to stack << operator(left, right) and then, after the com-
putation is done, make sure there are no console arguments remaining. Then print the whole stack back to the console.

Note: Optimal result is having only a single element present on the stack, however it can happen that there will be an
additional result if we provide more values than operators + 1.

Here is the complete solution. Obviously it can be optimized and refactored further, but that I’ve kept for you to have
fun.

import os

fn add(left f32, right f32) f32 {
return left + right

}

fn sub(left f32, right f32) f32 {
return left - right

}

fn mul(left f32, right f32) f32 {
return left * right

}

fn div(left f32, right f32) f32 {
return left / right

}

fn main() {
// RPN stack
mut stack := []f32
prioritized := ["mul", "div"]

(continues on next page)

3.3. Pseudo-stack with array 13

The Book of V, Release 0.4.5

(continued from previous page)

normal := ["add", "sub"]

for idx, value in os.args {
if idx == 0 {

continue
}

if (value in prioritized || value in normal) {
if stack.len < 2 {

panic("No values to use for operator $value")
} else {

right := stack[stack.len - 1]
stack.delete(stack.len - 1)

left := stack[stack.len - 1]
stack.delete(stack.len - 1)

if value == "add" {
stack << add(left, right)

} else if value == "sub" {
stack << sub(left, right)

} else if value == "mul" {
stack << mul(left, right)

} else if value == "div" {
stack << div(left, right)

} else {
println("$left $value $right")
println(stack)
panic("This should not happen!")

}

if idx == os.args.len - 1 {
println(stack)
exit(0)

} else {
continue

}
}

}

if (value in prioritized || value in normal) && stack.len < 2 {
panic("No values to use for operator $value")

}

if !(value in prioritized || value in normal) {
stack << value.f32()

}
}

}

14 Chapter 3. Chapter I: Calculator

CHAPTER

FOUR

CHAPTER II: HANGMAN

After the first chapter you should know how to use keywords fn and mut, types int, f32, string, array as
well as converting string input to f32 and some basic array operations with <<, array.len attribute and
array.delete().

4.1 Game loop

In this chapter we will create a Hangman game that will pick a random word from a predefined array of values. As for
any common game, we need to create a loop in which we check the inner state of the game and request a user input or
action if necessary.

fn game_loop() {}

fn main() {
game_loop()

}

To define what should be present in the game loop we need to check the Hangman description. So according to that,
the game loop should have a player always guessing either a letter or the whole hidden word until a player makes 6
mistakes. In between the guesses the game should visibly note player’s mistakes and unfold all places of a guessed
letter. The game ends either by providing a correct word, guessing all letters correctly or at player’s 6th mistake.

Let’s define the game ending conditions first as having 6 user attempts total, wrap checking for the user attempt in an
infinite loop and then stopping the game loop once the conditions are not matching. An infinite loop in V is defined as
a for loop without any specified condition. Afterwards the loop can be broken by a break keyword.

fn game_loop() {
max_attempts := 6
mut attempts := 0
for {

attempts++
println("User attempt $attempts")
if attempts >= max_attempts {

break
}

}
}

fn main() {
game_loop()
println("Game over")

}

15

https://vlang.io/docs#strings
https://vlang.io/docs#arrays
https://vlang.io/docs#strings
https://vlang.io/docs#arrays
https://github.com/vlang/v/blob/b73387647cdc1445a9c8a0ea000d8f1fae4d02f8/vlib/builtin/array.v#L14
https://github.com/vlang/v/blob/f7c00b818074689b5d87c1c571f0de5832820a7e/vlib/builtin/array.v#L107
https://en.wikipedia.org/wiki/Hangman_(game)#Overview
https://vlang.io/docs#for

The Book of V, Release 0.4.5

We can see that the amount of attempts is a value that won’t change, therefore we can declare it as a constant with
const keyword. Unlike ordinary variables a value to a const is assigned via = instead of := and can’t be changed.

const (
max_attempts = 6

)

fn game_loop() {
mut attempts := 0
for {

attempts++
println("User attempt $attempts")
if attempts >= max_attempts {

break
}

}
}

fn main() {
game_loop()
println("Game over")

}

Next we retrieve a user input so we can. If the length of the input is 1 we will treat it as guessing a character from the
whole word and display all its occurences if the character is present. If the input is longer than one character, player is
guessing the whole word and only if the word matches we display it. For any other case just take it as a failed attempt.

For user input import os, then use its os.get_line() function to retrieve a single line from console - or in other
words an input terminated by a single Enter key.

import os

const (
max_attempts = 6

)

fn game_loop() {
mut attempts := 0
guess_word := "hangman"
mut user_input := ""

for {
attempts++
println("User attempt $attempts")

user_input = os.get_line()
if user_input.len > 1 {

println("Guessing a word: $user_input")
} else if user_input.len == 1 {

println("Guessing a character: $user_input")
}

if attempts >= max_attempts {
break

}
}

}

(continues on next page)

16 Chapter 4. Chapter II: Hangman

https://github.com/vlang/v/tree/f7c00b818074689b5d87c1c571f0de5832820a7e/vlib/os
https://github.com/vlang/v/blob/fdfa564865331a2bda077164d804d6dc90b83498/vlib/os/os.v#L540
https://en.wikipedia.org/wiki/Enter_key

The Book of V, Release 0.4.5

(continued from previous page)

fn main() {
game_loop()
println("Game over")

}

Once we have the input available, let’s add a sample word hangman to a variable. Then create a mask of that word,
a value constructed of - characters in the same length as the guess word. That’s easily achievable with string.
repeat(count int) function.

import os

const (
max_attempts = 6

)

fn game_loop() {
mut attempts := 0
guess_word := "hangman"
display_word := "-".repeat(guess_word.len)
mut user_input := ""

for {
attempts++
println("Attempt $attempts")
println("Word: [$display_word]")

user_input = os.get_line()
if user_input.len > 1 {

println("Guessing a word: $user_input")
} else if user_input.len == 1 {

println("Guessing a character: $user_input")
}

if attempts >= max_attempts {
break

}
}

}

fn main() {
game_loop()
println("Game over")

}

If a player guesses correctly, go through the variable which stores hangmanword, find each occurence of the character
and replace the - characters with uncovered ones according to the position in the original word.

import os

const (
max_attempts = 6

)

fn game_loop() {
mut attempts := 0
guess_word := "hangman"

(continues on next page)

4.1. Game loop 17

https://github.com/vlang/v/blob/7696a600f6fc978ec655feea6d54a14c0d38caab/vlib/builtin/string.v#L1077
https://github.com/vlang/v/blob/7696a600f6fc978ec655feea6d54a14c0d38caab/vlib/builtin/string.v#L1077

The Book of V, Release 0.4.5

(continued from previous page)

mut display_word := "-".repeat(guess_word.len)
mut user_input := ""

for {
attempts++
println("Attempt $attempts")
println("Word: [$display_word]")

user_input = os.get_line()
if user_input.len > 1 {

println("Guessing a word: $user_input")
if user_input == guess_word {

display_word = guess_word
}

} else if user_input.len == 1 {
println("Guessing a character: $user_input")
mut buffer := ""
for idx, value in guess_word {

if value == display_word[idx] {
buffer += display_word[idx].str()
continue

}

if value != user_input[0] {
buffer += "-"
continue

}

buffer += guess_word[idx].str()
}
display_word = buffer

}

if display_word == guess_word {
println("Correctly guessed!")
break

}

if attempts >= max_attempts {
println("Game over")
break

}
}

}

fn main() {
game_loop()

}

Notice the sections where the str() function is called. While a word is stored as a string, that’s in simple terms
just an array of byte types. A byte on the other hand is so similar to an int that the str() function is the same
for both - int.str(c byte).

18 Chapter 4. Chapter II: Hangman

https://vlang.io/docs#strings
https://vlang.io/docs#arrays
https://github.com/vlang/v/blob/14c273f273c2bd8bff1d0cb2f775ec755e43455c/vlib/builtin/int.v#L180

The Book of V, Release 0.4.5

4.2 Improvements

If we look properly at this large game loop, we can see multiple parts that can be pulled out into separate functions
which will increase the readability of the overall code. Let’s move the code working with user input and name it as
guess() function. This function will take multiple string parameters and also return one string. We reflect
those properties to the function declaration and the result should look like this: fn guess(input string,
word string, mask string) string.

fn guess(input string, word string, mask string) string {
mut new_mask := mask

if input.len > 1 {
if input == word {

new_mask = word
}

} else if input.len == 1 {
mut buffer := ""
for idx, value in word {

if value == mask[idx] {
buffer += mask[idx].str()
continue

}

if value != input[0] {
buffer += "-"
continue

}

buffer += word[idx].str()
}
new_mask = buffer

}
return new_mask

}

For the conditions of word matching and attempts we create check_continue() function and make it return a
bool type so the for loop can automatically check the value and exit game loop when necessary. Similarly for the
match of the guessed word and already uncovered letters we create check_win() function so the logic is kept at
one place.

fn check_win(word string, mask string) bool {
return word == mask

}

fn check_continue(word string, mask string, attempts int) bool {
return !check_win(word, mask) && attempts < max_attempts

}

Finally, we move out the game summary prints to print_summary() function, clean unnecessary variables and
add spacing between code lines.

import os

const (
max_attempts = 6

(continues on next page)

4.2. Improvements 19

https://vlang.io/docs#strings
https://vlang.io/docs#strings
https://vlang.io/docs#for

The Book of V, Release 0.4.5

(continued from previous page)

)

fn guess(input string, word string, mask string) string {
mut new_mask := mask

if input.len > 1 && input == word {
new_mask = word

} else if input.len == 1 {
mut buffer := ""

for idx, value in word {
if value == mask[idx] {

buffer += mask[idx].str()
continue

}

if value != input[0] {
buffer += "-"
continue

}

buffer += word[idx].str()
}
new_mask = buffer

}
return new_mask

}

fn check_win(word string, mask string) bool {
return word == mask

}

fn check_continue(word string, mask string, attempts int) bool {
return !check_win(word, mask) && attempts < max_attempts

}

fn print_summary(word string, mask string) {
if check_win(word, mask) {

println("Correctly guessed!")
} else {

println("Game over!")
}

}

fn game_loop() {
guess_word := "hangman"
mut display_word := "-".repeat(guess_word.len)

mut attempts := 0
mut do_loop := true

for do_loop {
attempts++

(continues on next page)

20 Chapter 4. Chapter II: Hangman

The Book of V, Release 0.4.5

(continued from previous page)

println("Attempt $attempts")
println("Word: [$display_word]")

display_word = guess(os.get_line(), guess_word, display_word)
do_loop = check_continue(guess_word, display_word, attempts)

}

print_summary(guess_word, display_word)
}

fn main() {
game_loop()

}

While the current state of the game is workable, we still need to make it dynamic otherwise the game would be always
the same and after the first try everyone knows the answer. We can solve this by using a file named words.txt
which will contain guess words one per each line.

To read lines from a file on your operating system use os.read_lines(path string) function. Specify just
the name of the file to open it from the current “working” directory or in other words, from the folder you run your
program from.

After the array of string s is retrieved we need to pull a single word for the game to begin. Import rand and use
rand.next(max int) from it. Make sure the maximum value is set to the length of the words array to only
access its item by an index within the range of available words.

fn load_word(path string) string {
lines := os.read_lines(path)
return lines[rand.next(lines.len)]

}

If you try to include this function into the already existing game, it will most likely have a consistent behavior (always
the same word chosen). That’s because a randomness seed needs to be different on each run. For that import time
and input time.now() to a call setting the seed - rand.seed(s int).

Since rand.seed(s int) requires an int type we can convert the time.Time into a UNIX timestamp which is
a number we can safely use for seeding in this particular case. time.Time stores it in time.Time.uni attribute.

Once the seed is set we can call rand.next(max int). Now change the hard-coded guess word in
game_loop() into load_word("words.txt") and create a file named words.txt in the same folder as
is the hangman .v file. You can find a sample file in the Appendix section.

import os
import rand
import time

const (
max_attempts = 6

)

fn load_word(path string) string {
lines := os.read_lines(path)
rand.seed(time.now().uni)
return lines[rand.next(lines.len)]

}

(continues on next page)

4.2. Improvements 21

https://github.com/vlang/v/blob/fdfa564865331a2bda077164d804d6dc90b83498/vlib/os/os.v#L142
https://vlang.io/docs#arrays
https://vlang.io/docs#strings
https://github.com/vlang/v/tree/f7c00b818074689b5d87c1c571f0de5832820a7e/vlib/rand
https://github.com/vlang/v/blob/f7c00b818074689b5d87c1c571f0de5832820a7e/vlib/rand/rand.v#L11
https://vlang.io/docs#arrays
https://github.com/vlang/v/tree/f7c00b818074689b5d87c1c571f0de5832820a7e/vlib/time
https://github.com/vlang/v/blob/1ac162635781af7069c6490d821d8b05aea87c5b/vlib/time/time.v#L77
https://github.com/vlang/v/blob/f7c00b818074689b5d87c1c571f0de5832820a7e/vlib/rand/rand.v#L11
https://github.com/vlang/v/blob/f7c00b818074689b5d87c1c571f0de5832820a7e/vlib/rand/rand.v#L11
https://github.com/vlang/v/blob/1ac162635781af7069c6490d821d8b05aea87c5b/vlib/time/time.v#L47
https://github.com/vlang/v/blob/1ac162635781af7069c6490d821d8b05aea87c5b/vlib/time/time.v#L47
https://github.com/vlang/v/blob/1ac162635781af7069c6490d821d8b05aea87c5b/vlib/time/time.v#L55
https://github.com/vlang/v/blob/f7c00b818074689b5d87c1c571f0de5832820a7e/vlib/rand/rand.v#L11

The Book of V, Release 0.4.5

(continued from previous page)

fn guess(input string, word string, mask string) string {
mut new_mask := mask

if input.len > 1 && input == word {
new_mask = word

} else if input.len == 1 {
mut buffer := ""

for idx, value in word {
if value == mask[idx] {

buffer += mask[idx].str()
continue

}

if value != input[0] {
buffer += "-"
continue

}

buffer += word[idx].str()
}
new_mask = buffer

}
return new_mask

}

fn check_win(word string, mask string) bool {
return word == mask

}

fn check_continue(word string, mask string, attempts int) bool {
return !check_win(word, mask) && attempts < max_attempts

}

fn print_summary(word string, mask string) {
if check_win(word, mask) {

println("Correctly guessed!")
} else {

println("Game over!")
}

}

fn game_loop() {
guess_word := load_word("words.txt")
mut display_word := "-".repeat(guess_word.len)

mut attempts := 0
mut do_loop := true

for do_loop {
attempts++

(continues on next page)

22 Chapter 4. Chapter II: Hangman

The Book of V, Release 0.4.5

(continued from previous page)

println("Attempt $attempts")
println("Word: [$display_word]")

display_word = guess(os.get_line(), guess_word, display_word)
do_loop = check_continue(guess_word, display_word, attempts)

}

print_summary(guess_word, display_word)
}

fn main() {
game_loop()

}

4.2. Improvements 23

The Book of V, Release 0.4.5

24 Chapter 4. Chapter II: Hangman

CHAPTER

FIVE

CHAPTER III: WORD COUNTER

Counting can be a very simple example which can help explaining the grouping of some variables under one roof.
Let’s jump straight into fetching console arguments via os and define three modes this program will work with:

• -w or --words

• -l or --lines

• -c or --chars

import os

fn parse_mode(args []string) string {
mut mode := ""
words := ["-w", "--words"]
lines := ["-l", "--lines"]
chars := ["-c", "--chars"]

if args[1] in words {
mode = "words"

} else if args[1] in lines {
mode = "lines"

} else if args[1] in chars {
mode = "chars"

}
return mode

}

fn main() {
mode := parse_mode(os.args)
println("Mode: $mode")

}

To generalize the mode we create a container for it - a struct - with struct keyword. The container will hold
the mode’s name, its console arguments and later some other attributes. By default everything stored in a struct is
immutable and pretty much inaccessible which allows us to have efficient abstractions without hacky hot-fixes unless
we explicitly allow them.

struct Mode {
name string
cli_args []string

}

Once the struct is declared with name, curly brackets and its attributes it’s ready for usage. Although there are multiple

25

https://github.com/vlang/v/tree/f7c00b818074689b5d87c1c571f0de5832820a7e/vlib/os
https://vlang.io/docs#structs
https://vlang.io/docs#structs

The Book of V, Release 0.4.5

ways for populating its attributes with values, we’ll use explicitly stated attribute names before values. This allows us
to specify the attributes in an unordered way and it’s quite important in the long run from the project maintainability
perspective due to no requirement of keeping the order of the struct attributes (which may change by including a
new feature).

import os

struct Mode {
name string
cli_args []string

}

fn parse_mode(args []string) Mode {
mut mode := Mode{}
words := Mode{name: "words", cli_args: ["-w", "--words"]}
lines := Mode{name: "lines", cli_args: ["-l", "--lines"]}
chars := Mode{name: "chars", cli_args: ["-c", "--chars"]}

if args[1] in words.cli_args {
mode = words

} else if args[1] in lines.cli_args {
mode = lines

} else if args[1] in chars.cli_args {
mode = chars

}
return mode

}

fn main() {
mode := parse_mode(os.args)
println("Mode: $mode.name")

}

Now we can propagate each struct that’s initialized out of the function. Although V presents itself as not having a
global space for symbols, const keyword creates a very similar space as global one, but on the module level. Since
we can’t rewrite the value assigned as a constant, in combination with import keyword the module space is quite a
powerful and safe feature.

import os

struct Mode {
name string
cli_args []string

}

const (
words = Mode{name: "words", cli_args: ["-w", "--words"]}
lines = Mode{cli_args: ["-l", "--lines"], name: "lines"}
chars = Mode{name: "chars", cli_args: ["-c", "--chars"]}

)

fn parse_mode(args []string) Mode {
mut mode := Mode{}

(continues on next page)

26 Chapter 5. Chapter III: Word counter

https://vlang.io/docs#structs
https://vlang.io/docs#structs
https://vlang.io/docs#consts

The Book of V, Release 0.4.5

(continued from previous page)

if args[1] in words.cli_args {
mode = words

} else if args[1] in lines.cli_args {
mode = lines

} else if args[1] in chars.cli_args {
mode = chars

}
return mode

}

fn main() {
mode := parse_mode(os.args)
println("Mode: $mode.name")

}

Each mode needs some kind of configuration so the counter knows what to use for distinguishing between words, lines
or characters. This configuration we name sep as in separator and set it to <space> for words, \n for lines and
<empty string> for characters. Note that the last one will count even <space> or \n as a character.

struct Mode {
name string
cli_args []string
sep string

}

const (
words = Mode{name: "words", cli_args: ["-w", "--words"], sep: " "}
lines = Mode{cli_args: ["-l", "--lines"], name: "lines", sep: "\n"}
chars = Mode{name: "chars", cli_args: ["-c", "--chars"], sep: ""}

)

To count we need to fetch the path from os.args, open the file and process its contents with a counting function that
will use currently active counting mode. To open a file os.read_file(path string) is used which returns
the file contents and also closes the file. Nevertheless, we still need to ensure such a file is present on the system with
os.file_exists(_path string).

fn count(mode Mode, path string) int {
mut result := 0

if !os.file_exists(path) {
result = -1
return result

}

content := os.read_file(path) or {return result}
for item in content {

if "" in mode.sep || item.str() in mode.sep {
result++

}
}
return result

}

There is one catch with the os.read_file(path string) function, it returns an Option type. This kind of

27

https://github.com/vlang/v/blob/f7c00b818074689b5d87c1c571f0de5832820a7e/vlib/os/os.v#L30
https://github.com/vlang/v/blob/fdfa564865331a2bda077164d804d6dc90b83498/vlib/os/os.v#L96
https://github.com/vlang/v/blob/fdfa564865331a2bda077164d804d6dc90b83498/vlib/os/os.v#L460
https://github.com/vlang/v/blob/fdfa564865331a2bda077164d804d6dc90b83498/vlib/os/os.v#L96

The Book of V, Release 0.4.5

type has to be handled in your code with an or block that allows only specific set of keywords.

Once we handle the failing function and remove unnecessary printing to the console the program is ready and complete.

Here is a challenge for you as a reader: Currently it handles only a single file. Try to make it handle multiple files!

import os

struct Mode {
name string
cli_args []string
sep []string

}

const (
words = Mode{name: "words", cli_args: ["-w", "--words"], sep: [" ", "\n"]}
lines = Mode{cli_args: ["-l", "--lines"], name: "lines", sep: ["\n"]}
chars = Mode{name: "chars", cli_args: ["-c", "--chars"], sep: [""]}

)

fn parse_mode(args []string) Mode {
mut mode := Mode{}

if args[1] in words.cli_args {
mode = words

} else if args[1] in lines.cli_args {
mode = lines

} else if args[1] in chars.cli_args {
mode = chars

}
return mode

}

fn count(mode Mode, path string) int {
mut result := 0

if !os.file_exists(path) {
result = -1
return result

}

content := os.read_file(path) or {return result}
for item in content {

if "" in mode.sep || item.str() in mode.sep {
result++

}
}
return result

}

fn main() {
mode := parse_mode(os.args)
file := os.args[2]
println(count(mode, file))

}

28 Chapter 5. Chapter III: Word counter

CHAPTER

SIX

CHAPTER IV: ROLE-PLAYING GAME

In this chapter we’ll create a simplified role-playing game and leverage multiple structures via struct. Let’s start
with place properties such as name and links for connecting multiple place instances between themselves. Each place
will have one previous place and two places, one on the left side and one on the right side.

___ <left>
/

<previous> ---
___ <right>

To create a link between two place structures we need references to them and use such references as values. A symbol &
(ampersand) creates a reference for a computer memory where our place struct is stored. Reference is a voidptr
type.

struct Place {
name string
left &Place
right &Place
previous &Place

}

Each reference value for a struct will start as a nil which is a pointer that stores a value 0 and for that there is a
checker in V - isnil(v voidptr).

Let’s try to create and connect these places with code:

___ Pile of old leaves (left)
/

Tree (start) ---
___ Shrubbery (right) ---

___ Bear behind Shrubbery (right)

Each of the place nodes can either have nil as a previous/next node or an initialized different place. Set the reference
again by using & character before the symbol you want to reference, in this case an initialized place struct.

fn main() {
mut tree := Place{name: "Tree"}
mut pile := Place{name: "Pile of old leaves"}
mut shrub := Place{name: "Shrubbery"}
mut bear := Place{name: "Bear behind Shrubbery"}

// connect tree node with its children
tree.left = &pile
tree.right = &shrub
pile.previous = &tree

(continues on next page)

29

https://vlang.io/docs#structs
https://vlang.io/docs#structs
https://vlang.io/docs#structs
https://github.com/vlang/v/blob/06a7954298a4200d7c774e2b28a7f4d0375d562c/vlib/builtin/builtin.v#L25
https://vlang.io/docs#structs

The Book of V, Release 0.4.5

(continued from previous page)

shrub.previous = &tree

// forward-connect shrub node only
// because it already has 'previous' set
shrub.right = &bear
bear.previous = &shrub

println(&tree)
println(tree)

println(&pile)
println(pile)

println(&shrub)
println(shrub)

println(&bear)
println(bear)

}

Running this piece of code won’t yet work due to struct fields being immutable. To mark them as mutable use mut
keyword with a colon (:) suffix. mut: will mark all fields after it as mutable unless it encounters some other keyword
changing the struct field properties.

struct Place {
name string

mut:
left &Place
right &Place
previous &Place

}

Once that is fixed, we get an output like below (the memory addresses will be different). Notice the connections
between each of the nodes such as Tree memory address (0x7ffe01a7eac0 in this case) being equal Shrubbery
previous node’s address.

0x7ffe01a7eac0
{

name: Tree
left: 0x7ffe01a7ea90
right: 0x7ffe01a7ea60
previous: (nil)

}
0x7ffe01a7ea90
{

name: Pile of old leaves
left: (nil)
right: (nil)
previous: 0x7ffe01a7eac0

}
0x7ffe01a7ea60
{

name: Shrubbery
left: (nil)
right: 0x7ffe01a7ea30
previous: 0x7ffe01a7eac0

(continues on next page)

30 Chapter 6. Chapter IV: Role-Playing Game

https://vlang.io/docs#structs
https://vlang.io/docs#structs

The Book of V, Release 0.4.5

(continued from previous page)

}
0x7ffe01a7ea30
{

name: Bear behind Shrubbery
left: (nil)
right: (nil)
previous: 0x7ffe01a7ea60

}

The places are ready, let’s create a traveler who will navigate through them. Our traveler will for now contain a single
property - location - which is a reference for an already existing place. This always requires a value and must not be
nil. We can achieve such behavior by initializing the struct with a value and assigning only valid values to that
property.

struct Traveler {
mut:

location &Place
}

fn main() {
...
traveler := Traveler{location: &tree}
...
println(traveler.location.name)

}

While assigning invalid values e.g. an incorrectly typed (or raw) value is not an error right now and we can happily do
traveler.location = 0, it will make the program access a part of memory which it should not be allowed to
do, therefore will result in a Segmentation fault (core dumped).

By using reference for a place and its references for the neighborhood creating a function that will move the traveler
is a piece of a cake. We just need to watch out for nil with a short check that both accepts and returns references for
places.

fn nonnil_or_stay(old_place &Place, new_place &Place) &Place {
if isnil(new_place) {

println("Nothing is there.")
return old_place

} else {
return new_place

}
}

With this block we can repeat the check for multiple directions we would like to travel - back, left or right - which
helps with directly assigning them to traveler’s location property since it should return either its old value or the new
one for the desired direction if not nil.

The function moving our traveler will require a mutable instance of traveler struct and an immutable string for the
direction. Mutability can again be achieved by mut keyword.

fn move(trav mut Traveler, direction string)

First pull some values out of the traveler instance directly and even from its references into variables for easier access
and less repetitive code.

31

https://vlang.io/docs#structs
https://vlang.io/docs#structs

The Book of V, Release 0.4.5

place := trav.location
back := place.previous
left := place.left
right := place.right

Then complete the function by choosing the right location for traveler property via the place checking function and
stored place references,

fn move(trav mut Traveler, direction string) {
place := trav.location
back := place.previous
left := place.left
right := place.right

println("Old location $trav.location.name")
println("Trying to move $direction")

if direction == "back" {
trav.location = nonnil_or_stay(place, back)

} else if direction == "left" {
trav.location = nonnil_or_stay(place, left)

} else if direction == "right" {
trav.location = nonnil_or_stay(place, right)

} else {
println("$direction is not valid, use back, left or right")

}
println("New location $trav.location.name")

}

and replace the place properties’ values printing with move functions.

fn main() {
...
// forward-connect shrub node only because it already has 'previous' set
shrub.right = &bear
bear.previous = &shrub

move(mut traveler, "back")
move(mut traveler, "left")
move(mut traveler, "back")
move(mut traveler, "right")
move(mut traveler, "back")

}

Here is a sample output of how it should look like.

Old location Tree
Trying to move back
Nothing is there.
New location Tree
Old location Tree
Trying to move left
New location Pile of old leaves
Old location Pile of old leaves
Trying to move back
New location Tree
Old location Tree

(continues on next page)

32 Chapter 6. Chapter IV: Role-Playing Game

The Book of V, Release 0.4.5

(continued from previous page)

Trying to move right
New location Shrubbery
Old location Shrubbery
Trying to move back
New location Tree

Any function you create with fn keyword can also contain a special syntax before its name - a receiver - which is in
simple terms just a specification for the compiler to allow calling that function via dot-lookup (using . for fetching an
attribute of some entity).

Using (variable mutability Struct) syntax let’s make the function for moving accessible directly from
the traveler just by moving a function argument slightly to the left in the function declaration. Also, don’t forget to
make the traveler mutable.

fn (trav mut Traveler) move(direction string) {
...

}

fn main() {
...
mut traveler := Traveler{location: &tree}
...
traveler.move("back")
traveler.move("left")
traveler.move("back")
traveler.move("right")
traveler.move("back")

}

33

The Book of V, Release 0.4.5

34 Chapter 6. Chapter IV: Role-Playing Game

CHAPTER

SEVEN

APPENDIX

1. Calculator test cases

2. Hello, world!

3. word-list

1. types

2. keywords

35

The Book of V, Release 0.4.5

36 Chapter 7. Appendix

CHAPTER

EIGHT

INDEX

37

The Book of V, Release 0.4.5

38 Chapter 8. Index

CHAPTER

NINE

INDICES AND TABLES

• search

39

The Book of V, Release 0.4.5

40 Chapter 9. Indices and tables

INDEX

A
add, 7
addition, 7
argument, 9
arguments, 9, 11, 13
array, 10
array declaration, 10
attempts, 15

B
basic, 8
Book, 1
break, 15
buckets, 11

C
calculator, 7, 12
cast, 11
character, 16
compilation, 9
computer, 7
concat, 11
conditions, 15
console, 13
const, 16
conversion, 11
correct, 15
counter, 25

D
delete, 10
dollar symbol, 11

E
editable, 10
element, 10
entrypoint, 7
executable, 7, 9

F
first program, 7
for, 15

formatting, 11

G
game, 15
game loop, 15
get_line, 16
guess, 15

H
handling, 13
hangman, 15
hard-coded, 9

I
immutable, 10
importing, 9
infinite, 15
instructions, 12
integer, 7
integer division, 8
Introduction, 1

L
left shift, 10
len, 11
length, 11
letters, 15
limited, 12

M
main, 7
manipulation, 11
mask, 17
match, 16
mistakes, 15
mut, 10
mutable, 10

O
occurence, 17
operation, 7
operations, 12

41

The Book of V, Release 0.4.5

operator, 10, 13
os, 9, 16

P
panic, 11
path, 9
pop, 10
precedence, 11
println, 7
pseudo-stack, 10
push, 11

R
remove, 10, 11
repeat, 17
resizing, 11
result, 13
Reverse Polish notation, 10, 11
rework, 13

S
shift, 10
solution, 13
stack, 10, 11
strange, 8
syntax, 10

W
warning, 11
word, 15, 25

42 Index

	Installation
	Prerequisities
	Cloning, compiling and building

	Modes
	REPL
	Compiler
	Runner

	Chapter I: Calculator
	Operations
	Input
	Pseudo-stack with array

	Chapter II: Hangman
	Game loop
	Improvements

	Chapter III: Word counter
	Chapter IV: Role-Playing Game
	Appendix
	Index
	Indices and tables
	Index

